Math 312 - AB1 Assignment # 1 Due January 18, 2007

Instructions

- This assignment is to be done by you individually no group work.
- Show all main steps, and give exact answers to all problems.
- Please label the solutions #1, #2, ... on your assignment, rather than by corresponding textbook numbers.
- Bonus marks are available for well-written correct solutions to problems which (i) nobody else solved correctly, or (ii) nobody else attempted by your method.
- 1. #12 from Section 1.4
- 2. A metal ring is held in place at the origin of xyz-space by four forces:
 - \vec{F}_1 is 4 Newtons of force along the positive x-axis.
 - \vec{F}_2 is 5 Newtons of force along the positive y-axis.
 - \vec{F}_3 is 8 Newtons of force along the negative z-axis.

Find the magnitude of the fourth force \vec{F}_4 which is balancing the other three, and find its direction angles α , β , γ .

- 3. The following lines and planes are used in this question:
 - Line $L_1: \vec{R} = (2\hat{i} 3\hat{j})t + (\hat{i} + \hat{k})$
 - Line L_2 : $\frac{x}{6} = \frac{y-4}{3} = z+2$
 - Plane P: 3x + 2y 6z = 11
 - (a) Find equations for L_1 and vector form for L_2 .
 - (b) Find the intersection set of L_1 and L_2 (point, line, or empty set).
 - (c) Find a unit vector normal to P.
 - (d) Find the intersection point of P and L_2 , and the angle at which they cross.
 - (e) Show that L_1 is parallel with P, and find the distance between them.
- 4. Decompose the vector $\vec{v} = 5\hat{i} 20\hat{j}$ into components parallel with and perpendicular to the vector $\vec{q} = \hat{j} + \hat{k}$.
- 5. #13 from Section 1.9
- 6. Find r and s if $(\hat{i} + 2\hat{j} \hat{k}) \times (r\hat{i} + s\hat{j} + 4\hat{k}) = \vec{0}$
- 7. Define the points A(3,1,0) , $\,B(0,0,6)$, $\,C(1,0,2)$, $\,D(1,1,1).$
 - (a) Find the distance from A to D, and find equations for the line through them.
 - (b) Find the area of triangle ABC, and find an equation of the plane containing it.
 - (c) Find the volume of the tetrahedron ABCD.
- 8. #9 from Section 1.14